Lectur 25:
Complexity Theory

Part 1 of 2

It may be that since one is customarily
concerned with existence, [...] finiteness,
and so forth, one is not inclined to take
seriously the question of the existence of a
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”

A Decidable Problem

* Consider the following problem:

Given two regular expressions Ri1 and Rz,
determine whether Ri1 and Rz have the same
language.

* This problem is indeed decidable.

 We autograded your regular expressions in Problem
Set Seven. The algorithm we used is 100% accurate.

 Theorem: There is no algorithm for solving this
problem whose runtime is O(2™*"), where m and
n are the lengths of the input regular
expressions.

The Limits of Decidability

 The fact that a problem is decidable does not
mean that it is feasibly decidable.

* In computability theory, we ask the question
What problems can be solved by a computer?
* In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

 In the remainder of this course, we will
explore this question in more detail.

Where We've Been

* The class R represents problems that can be
solved by a computer.

 The class RE represents problems where “yes”
answers can be verified by a computer.

Where We're Going

* The class P represents problems that can be
solved efficiently by a computer.

 The class NP represents problems where “yes”
answers can be verified efficiently by a
computer.

Regulas CFLs

Languajes |
Efficiently

Decidable
Languages

Undecidable Languages

The Setup

* In order to study computability, we needed to
answer these questions:

« What is “computation?”
 What is a “problem?”
« What does it mean to “solve” a problem?

* To study complexity, we need to answer these
questions:

 What resources do we want our programs to make
“efficient” use of?

« How do we draw the line between “efficient” and
“inefficient?”

Measuring Efficiency

 We have a program written in your Favorite Programming
Language that’s a decider for some problem.

 The program is correct in the sense that it always produces the
right output for any given input.

« What aspect of that program might we measure to quantify
“efficiency?”
 The number of lines of code in the program.
« How deeply-nested the loops or recursion in the program are.
« How much time it takes for the program to solve the problem.
« How much memory it takes for the program to solve the problem.
« How much power it takes for the program to solve the problem.

« How much network communication it takes for the program to solve
the problem.

Measuring Efficiency

« How much time it takes for the program to solve the problem.

We're going To tocus on This
measure ot ‘efficiency,” buf that
doesn’t mean these other ones
aren’t inferesting: There’s fons of
research on them,

What is an efficient algorithm?

Let’s explore some problems and
solutions and see what we notice!

A Common Pattern:
Searching Finite Spaces

 Many decidable problems can be solved by
searching over a large but finite space of
possible options.

* Searching this space might take a
staggeringly long time, but only finite time.

 From a decidability perspective, this is totally
fine.

 From a complexity perspective, this may be
totally unacceptable.

Longest Increasing Subsequences

 One possible algorithm: try all subsequences,
find the longest one that's increasing, and return
that.

 There are 2" subsequences of an array of length n.
« (Each subset of the elements gives back a subsequence.)

* Checking all of them to find the longest increasing
subsequence will take time O(n - 27).

» Fact: the age of the universe is about 4.3 x 102°
nanoseconds. That's about 28> nanoseconds.

» Practically speaking, this algorithm doesn't
terminate if you give it an input of size 100 or
more.

A Different Approach

Patience Sorting

13

5

6 1122 8 0 10

- D

=)

=
-I—\
=) \O

7
LI I |

rr111t11

W = O

Put each number on top of the first pile
whose top value is larger than it. (If you

Then, add a link to the top number in the

Place each number on top of a pile.

can’t, make a new pile.)

previous pile.

AN

2

5

7\
9\6
11 13

Patience Sorting

4/3119 7 135 6 112 2 8 0 10

Trace backwards from the top of the last
pile. The numbers you visit form one of the
longest increasing subsequences of your
original sequence.

\6\8

/

O N n N

W = O

11 13 12

Longest Increasing Subsequences

« Theorem: There is an algorithm that can find the

longest increasing subsequence of an array in time
O(n?).

* It’s the previous patience sorting algorithm, with some
clever implementation tricks.

« This algorithm works by exploiting particular aspects
of how longest increasing subsequences are
constructed. It's not immediately obvious that it
works correctly.

« CS161-Style Exercise 1: Prove that this procedure
always works!

« CS161-Style Exercise 2: Show that you can
implement this algorithm in time O(n log n).

Another Problem

Goal: Determine the
length of the shortest
path from F to A in
this graph.

Shortest Paths

It is possible to find the shortest path in a
graph by listing off all sequences ot
nodes in the graph in ascending order of
length and finding the first that's a path.

e This takes time O(n - n!) in an n-node
graph.

* For reference: 29! nanoseconds is longer
than the lifetime of the universe.

Shortest Paths

 Theorem: It's possible to find the
shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

 Proof idea: Use breadth-first search!
» This scales nicely!

» The algorithm is a bit nuanced. It uses
some specific properties of shortest paths
and the proof of correctness is nontrivial.

For Comparison

« Longest increasing * Shortest path
subsequence: problem:

 Naive: O(n - 2") e Naive: O(n - n!)
 Fast: O(n?) Fast: O(n + m).

Defining Efficiency

« When dealing with problems that search
tfor the “best” object of some sort, there
are often at least exponentially many
possible options.

 Brute-force solutions tend to take at least
exponential time to complete.

* Clever algorithms often run in time O(n),
or O(n?), or O(n?), etc.

Polynomials and Exponentials

* An algorithm runs in polynomial time it
its runtime is some polynomial in n.

 That is, time O(n*) for some constant k.
* Polynomial functions “scale well.”

 Small changes to the size of the input do not
typically induce enormous changes to the
overall runtime.

 Exponential functions scale terribly.

 Small changes to the size of the input induce
huge changes in the overall runtime.

The Cobham-Edmonds Thesis

A language L can be decided efficiently it
there is a TM that decides it in polynomial time.

Equivalently, L can be decided efficiently if
it can be decided in time O(n*) for some k € N.

Like the Church-Turing thesis, this is
not a theorem!

It's an assumption about the nature of
efficient computation, and it is
somewhat controversial.

The Cobham-Edmonds Thesis

Which of the following are considered efficient runtimes?

1 n2-3n+17 | / This is a polynomial in n.

2 nlogn V4 Bounded by n?.

3 n1,000,000,000 V4 This is a polynomial in n.

4 n" X | Eventually bigger than n* for all k.
5 n! X | Eventually bigger than n* for all k.
6 A X | Eventually bigger than n* for all k.
7 1.0000001" X | Eventually bigger than n* for all k.
8 10500 v/ 11059 = 105% noijs a polynomial in n.

Why Polynomials?

* Polynomial time somewhat captures efficient
computation, but has a few edge cases.

 However, polynomials have very nice mathematical
properties:

 The sum of two polynomials is a polynomial. (Running one
efficient algorithm, then another, gives an efficient
algorithm.)

* The product of two polynomials is a polynomial. (Running
one efficient algorithm a “reasonable” number of times
gives an efficient algorithm.)

 The composition of two polynomials is a polynomial.
(Using the output of one efficient algorithm as the input to
another efficient algorithm gives an efficient algorithm.)

The Complexity Class P

« The complexity class P (for polynomial
time) contains all problems that can be
solved in polynomial time.

* Formally:

P = { L | There is a polynomial-time
decider for L }

 Assuming the Cobham-Edmonds thesis, a
language is in P if it can be decided
efficiently.

Examples of Problems in P

» All regular languages are in P.
« All have linear-time TMs.

 All CFLs are in P.

 Requires a more nuanced argument (the
CYK algorithm or Earley's algorithm).

 And a ton of other problems are in P as
well.

e Curious? Take CS161!

Regular

Languages

Undecidable Languages

What can't you do in polynomial time?

How many
subsets ot this
seT are There?

An Interesting Observation

* There are (at least) exponentially many
objects of each of the preceding types.

« However, each of those objects is not very
large.

 Each simple path has length no longer than the
number of nodes in the graph.

« Each subset of a set has no more elements than
the original set.

* This brings us to our next topic...

What if you need to search a large
space for a single object?

Verifiers - Again

Does this Sudoku problem

have a solution?

Verifiers - Again

11

9 7 13

5

6 1 12 2 8|0 10

Is there an ascending subsequence of
length at least 5?

Verifiers - Again

Is there a path that goes through
every node exactly once?

Polynomial-Time Verifiers

* A polynomial-time verifier for L is a
TM V such that

« V halts on all inputs.
e we€L o dceX* Vaccepts (w, c).

* Vruns “efficiently” (its runtime is O(|w|*) for
some k € N).

« All strings in L have “short” certificates
(their lengths are O(|w|") for some r € N).

The Complexity Class NP

 The complexity class NP (nondeterministic polynomial
time) contains all problems that can be verified in
polynomial time.

* Formally:

NP = { L | There is a polynomial-time
verifier for L }

* The name NP comes from another way of characterizing NP.
If you introduce nondeterministic Turing machines and
appropriately define “polynomial time,” then NP is the set of
problems that an NTM can solve in polynomial time.

 Useful fact: NP ¢ R.

 Proofidea: If L € NP, all strings in L have “short” certificates.
Therefore, we can just try all possible “short” certificates and see if
any of them work. (Showing NP is a strict subset of R requires
some more advanced techniques.)

NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }

RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }

We know that R # RE.

So does that mean P # NP?

Time-Out for Announcements!

Please evaluate this course in Axess.
Your comments really make a difference.

Christmas Trees Lecture

 Don Knuth, professor emeritus, will be
giving a talk this Thursday, December 4
as part of his “Christmas Trees” series.

 It’ll be in NVIDIA Auditorium at 6 PM.

 Highly recommended - Don is a legend in
the field and frequently has amazing
insights to share.

* (Here’s a)

https://www.nytimes.com/2018/12/17/science/donald-knuth-computers-algorithms-programming.html

Problem Sets

 Problem Set 8 solutions are now up on the
course website.

* Your TAs are working on grading them, and
we’ll have them ready late Wednesday evening.

* Problem Set 9 is due this Friday at 1:00PM.

« As always, come talk to us if you have any
questions!

» Feel free to use a late day if you have one left
OVer.

Final Exam Logistics

* Our final exam is on Wednesday, December
10 from 3:30 - 6:30 PM.

* Locations and seating assignments to be
posted later this week.

* The final exam is covers topics from PSO -
PS9 and LOO - L26. The format is similar to
that of the midterm, with a mix of short-
answer questions and formal written proofs.

» Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one
double-sided 8.5” X 11” notes sheet with you.

Preparing for the Exam

« We’ll have a final exam review session this
Friday, 4:30 - 5:30 PM. We’re ironing out a
few details and will share more soon.

 We’ve released a Cumulative Practice
Problems list, a gigantic searchable
database of problems you can use to brush
up on whatever topics you need the most
practice with.

* As always, keep the TAs in the loop when
studying! That’s what we’re here for.

Back to CS103!

And now...

The
Biggest Question
in

Theoretical Computer Science

P = { L | There is a polynomial-time
decider for L }

NP = { L | There is a polynomial-time
verifier for L }

inputshﬁng(mﬂ»// A
Polynomial-Time
Decider for L

< 4

oo

bool solveProblemL(string w) {

do some work;
return the answer;

}

P = { L | There is a polynomial-time
decider for L }

NP = { L | There is a polynomial-time
verifier for L }

inputshﬁng(mﬂ»// N

Polynomial-Time

certificate (c) | Verifier for L
(ignored) < Y

oo

bool solveProblemL(string w, string c) {
/* don't even look at c */
do some work;
return the answer;

}

Which Picture is Correct?

NP

Which Picture is Correct?

P =NP

 The P = NP question is the most important question in
theoretical computer science.

* With the verifier definition of NP, one way of phrasing
this question is

If a solution to a problem can be checked efficiently,
can that problem be solved efficiently?

 An answer either way will give fundamental insights
into the nature of computation.

Why This Matters

 The following problems are known to be efficiently
verifiable, but have no known efficient solutions:

 Determining whether an electrical grid can be built to link up
some number of houses for some price (Steiner tree problem).

* Determining whether a simple DNA strand exists that multiple
gene sequences could be a part of (shortest common
supersequence).

 Determining the best way to assign hardware resources in a
compiler (optimal register allocation).

 Determining the best way to distribute tasks to multiple
workers to minimize completion time (job scheduling).

« And many more.

« If P = NP, all of these problems have efficient solutions.

« If P # NP, none of these problems have efficient solutions.

Why This Matters

 If P = NP:

* A huge number of seemingly difficult problems
could be solved efficiently.

* Our capacity to solve many problems will scale
well with the size of the problems we want to
solve.

« If P = NP:

« Enormous computational power would be
required to solve many seemingly easy tasks.

* Our capacity to solve problems will fail to keep up
with our curiosity.

What We Know

* Resolving P = NP has proven extremely difficult.
* In the past 50 years:

* Not a single correct proof either way has been
found.

« Many types of proofs have been shown to be
insufficiently powerful to determine whether
P = NP.

* A majority of computer scientists believe P # NP,
but this isn't a large majority.

* Interesting read: Interviews with leading thinkers
about P = NP:

https://www.cs.umd.edu/~gasarch/papers/poll.pdf

The Million-Dollar Question
CHALLENGE ACCEPTED

The Clay Mathematics Institute has offered
a $1,000,000 prize to anyone who proves
or disproves P = NP.

“My hunch is that [P = NP] will be solved
by a young researcher who is not
encumbered by too much conventional
wisdom about how to attack the problem.”

- Prof. Richard Karp

(The guy who first popularized the P = NP problem.)

What do we know about P = NP?

Adapting our Techniques

NP

{ L | there is a polynomial-time
decider for L }

{ L | there is a polynomial-time
verifier for L }

RE

{ L | thereis a
decider for L }

{ L | thereis a
verifier for L }

We know that R # RE.

So does that mean P # NP?

A Problem

 The R and RE languages correspond to
problems that can be decided and verified,
period, without any time bounds.

e To reason about what's in R and what's in
RE, we used two key techniques:

* Universality: TMs can simulate other TMs.

» Self-Reference: TMs can get their own source
code.

* Why can't we just do that for P and NP?

Theorem (Baker-Gill-Solovay): Any
proof that purely relies on universality and
self-reference cannot resolve P = NP.

Proof: Take CS154!

So how are we going to
reason about P and NP?

Next Time

* Reducibility

* A technique for connecting problems to one
another.

« NP-Completeness
 What are the hardest problems in NP?

